

Internet of Things (IoT)

Vikram Raval GSMA

Introductions

Your objectives

- What do you expect to learn from this course?
- How is it relevant to you?

Themes

- Understanding the benefits IoT can bring
- Key differences between IoT and Traditional Telecom services
- Regulation and IoT

Aims of this course

- Define IoT
- Understand the technology behind IoT
- Analyse operational aspects of IoT
- Understand IoT business models
- Explore the policy and regulatory implications of IoT
- Examine a number of examples of IoT

Outline of the session

- Overview of IoT
- What is IoT?
- What are the common elements of IoT?
- Definitions of IoT from around the world
- What are the differences between IoT and traditional services?
- What are the levers, drivers and inhibitors of IoT?
- What are the benefits of IoT to citizens and wider socio-economic benefits?
- Discovering the business models and innovation in business models to enable successful IoT
- How can governments can help foster and drive IoT adoption and innovation in their country?

Overview of IoT

- An introductory video
- What is IoT?
- Exercise: How does IoT differ from traditional services?
- Drivers and inhibitors of IoT
- Connections and revenue forecasts

Overview of IoT: what is IoT?

Key messages

IoT is still at a very early stage of development, so definitions are still evolving

Smart mining

Connected car

What is IoT?

Connected thermostat

Smart solar power plant

Smart cities

Remote health monitoring

Smart farm

Connected thermostat

Connected car

Remote health monitoring

Smart solar power plant

Smart meters

Smart mining

Smart city

Smart farm

Network / Connectivity

Device

Sensor / Actuator

typically

Exercise: Identify common IoT elements

- Thinking about the eight examples just presented, what common patterns/elements can you identify across the solutions?
- What would be your definition of IoT?

Definitions of Internet of Things:

The Internet of Things (IoT) refers to the use of intelligently <u>connected devices</u> and systems to leverage <u>data</u> gathered by embedded <u>sensors</u> and <u>actuators</u> in machines and other physical objects. – *GSMA*

> The IoT is [...] the <u>interconnection</u> of multiple M2M applications, often enabling the exchange of <u>data</u> across multiple industry sectors. An example is the ability to manage traffic flow, reduce pollution and improve health by combining data from a range of transport, healthcare and environmental <u>sensors</u>. – Ofcom

Noun - The *interconnection* via the Internet of computing *devices* embedded in everyday objects, enabling them to send and receive *data* – *Oxford Dictionary*

Definitions of Internet of Things:

"what all definitions of IoT have in common is that they focus on how computers, sensors, and objects interact with one another and process data." - FTC

s multiple

reduce

Olionar

and improve health by combining data from a range of transport, healthcare

Noun - The <u>interconnection</u> via the Internet of computing <u>devices</u> embedded in everyday objects, enabling them to send and receive <u>data</u> – Oxford Dictionary

Internet of Things (IoT) vs Machine-to-Machine (M2M)

Summary: what is IoT

There are four key elements common to an IoT solution A network is used to provide connectivity Data is transmitted and often received by the end device • The solution is integrated into a new or existing device Data is captured by sensors and can trigger a reaction by actuators IoT is still evolving and, as a result, so is its definition

Overview of IoT: How does IoT differ from traditional services?

Key messages

Regulators should recognise these differences when considering policy and regulatory frameworks

How does IoT differ from traditional services?

How does IoT differ from traditional services?

	Traditional services		ΙοΤ
Connected elements	People		?
Connections	Correlated to # of people		?
Core service	Connectivity		?
Footprint	National		?
Connectivity ARPU	High	\rightarrow	?
Business model	B2C or B2B		?

There are many differences...

...and governments can help IoT grow...

	Traditional services	Support	ΙοΤ
Connected elements	People		Things
Connections	Correlated to # of people		Correlated to # of things
Core service	Connectivity	2)	Application and device
Footprint	National		Global
Connectivity ARPU	High		Low
Business model	B2C or B2B		B2B2C or B2B2B

	Traditional services	Support	ΙοΤ
Connected elements	People		Things
Connections	Correlated to # of people	Building trust	Correlated to # of things
Core service	Connectivity	Interoperability	Application and device
Footprint	National	Global deployment	Global
Connectivity ARPU	High	Promoting investment	Low
Business model	B2C or B2B		B2B2C or B2B2B

Summary: How does IoT differ from traditional services?

IoT services differ from traditional service on dimensions such as:

- What is being connected (things vs people)
- The core element of the service (application vs connectivity)
- The volume of connections
- The ARPU (low vs high)

2

Governments can help drive IoT adoption in their country by focusing on four areas:

 Enabling global deployment, promoting investment, building trust, promoting interoperability

Overview of IoT: drivers and inhibitors of IoT

Key messages

IoT is being driven by technology advancements, decreasing costs and demands for efficiency

Clarity on how data privacy laws are applied to IoT can help this nascent market develop

Some drivers of IoT...

...and some inhibitors of IoT

Summary: drivers and inhibitors of IoT

- Government policies promoting IoT growth
- Cost savings
- New revenue opportunities

IoT's growths can be hindered by:

- Technology limitations
- Privacy requirements
- Security requirements
- The business case
- Policy and legal barriers

Overview of IoT: connections and revenue forecasts

Key messages

IoT is still a nascent industry and is expected to grow at a fast pace

There are many socio-economic benefits that IoT solutions can deliver

IoT connections

* Gartner did not report forecasts for 2022

IoT cellular and LPWA connections

IoT cellular + LPWA as a share of total IoT connections

IoT cellular and LPWA connections

IoT cellular + LPWA connections as a share of all cellular + LPWA

IoT revenues

IoT cellular and LPWA revenues

IoT cellular + LPWA revenue (connectivity) as a share of total IoT

IoT cellular and LPWA revenues

IoT cellular + LPWA revenue as a share of all cellular + LPWA

There are many configurations for IoT solutions

Even for solutions using mobile networks, connectivity is only a small share of revenue

Revenue for IoT services using cellular and LPWA connectivity, by value chain element

Socio-economic benefits of IoT

Economic benefits

Between \$3.9tn and \$11.1tn of economic impact by 2025 - Mckinsey

\$14.4 trillion in higher revenue and lower cost - Cisco

Annual global savings of over \$5.6tn with semi-autonomous and autonomous cars – Morgan Stanley

Summary: connections and revenue forecasts

1	IoT is still a nascent industry and is expected to grow at a fast pace
2	IoT cellular accounts for a very small share of the total IoT
3	There are a wide range of socio-economic benefits that IoT can deliver

Business models of IoT

Key messages

Business model innovation will mostly impact where the IoT company interacts with the customer

Business models of IoT: from suppliers to customer

Business models of IoT: from suppliers to customer

There are 5 main business models enabled by IoT between the IoT company and the customer ...

Business models
Revenue-sharing
Cost-savings sharing
Product-sharing
Product-as-a-Service
Performance-as-a- Product

Transactional

...and can be compared in terms of revenue structure and device ownership

Rusiness models	Revenue of the IoT company			Device ownership	
Dusiness mouers	Upfront	Recurring	Usage	User	IoT company
Revenue-sharing		\checkmark			\checkmark
Cost-savings sharing		\checkmark			\checkmark
Product-sharing			\checkmark		\checkmark
Product-as-a-Service		\checkmark			\checkmark
Performance-as-a- Product			\checkmark	\checkmark	
Transactional	\checkmark			\checkmark	

The descriptions above are the most common and variations are possible. For example, transactional may also include device ownership from the IoT company.

Revenue-sharing

Problem	Tracking location and status of vehicles
Traditional solution	 Traditional fleet management solutions were static software packages that could not provide the fleet manager real time information on a vehicle's location or status
IoT	 A tracking device, like an on-board diagnostics (OBD-II) module, can be
solution	placed in the vehicle and provide the fleet manager with real time information
loT	 A local reseller, like a mobile operator, sells and supports the solution. It
business	shares revenues with the company providing the technology (hardware and
model	software) for the service.

Revenue-sharing

Traditional business model

IoT business model

The revenue share model gives the local reseller access to a broader range of technology. For the fleet management firm, the model allows it to enter new countries. For both parties, the revenue share model limits risk.

Costs savings sharing

Problem	Home/building energy consumption.
Traditional solution	 The end user pays for the Heating, Ventilating and Air Conditioning (HVAC) system and its maintenance, and also pays the energy company for its power consumption.
loT solution	 The IoT company installs equipment to monitor and control the HVAC system at the customer's premise. The HVAC system automatically adjusts to the user's requirements and optimises its energy consumption.
loT business model	 The end user pays no up front fees; equipment costs are covered by the IoT company. The end user benefits from lower energy costs. A share of the money saved goes to the IoT company to cover the cost of equipment.

Costs savings sharing

The IoT solution allows end users to save on their energy consumption costs and use part of the savings to pay for the IoT solution

Product-sharing

Problem	Relatively high investment and maintenance costs of a car.
Traditional solution	 The end user buys the car upfront and pays for its ongoing maintenance, fuel and insurance.
loT solution	 The end user can drive a number of cars made available across a city, without needing to own one. All car related costs are managed by the IoT company, Car2Go. A smartphone app, allows users to reserve the car, locate and unlock it.
loT business model	 The IoT company charges end users by the minute for using a car. The fees include the cost of the car, its maintenance, fuel and insurance. From managing a large fleet of vehicles, the IoT company can achieve economies of scale, which can be translated into competitive prices for the end user.

Product-sharing

IoT business model

The IoT business model allows the IoT company to transfer savings from economies of scale to the end user

Product-as-a-Service

Problem	High investment and maintenance cost of heavy medical equipment.
Traditional solution	 The user (e.g. hospital) buys the equipment upfront and can face high maintenance costs. Different suppliers may be involved in selling and supporting the equipment.
IoT solution	 The hospital pays for the equipment and maintenance to the IoT company. The equipment is remotely monitored in terms of usage and performance, allowing the IoT company to perform predictive maintenance. As a result, the end user can benefit from reduced or no disruption from equipment downtime.
loT business model	 The IoT company charges a recurring fee to the hospital. This fee includes the use of the equipment and its maintenance. The equipment is owned by the IoT company, who by actively monitoring it can pre-empt potentially serious issues that could result in expensive maintenance.

Product-as-a-Service

The IoT solution can perform predictive maintenance, allowing the end user to benefit from lower or no disruption and more affordable cost

Performance-as-a-product

Performance-as-a-product

The IoT solution aligns the interests of the airline with the maintenance provider

Summary: business models

IoT can be a catalyst for significant innovation in business models

2

Business model innovation will have the most impact in the area where the IoT company interacts with the cutomer

Wrap up

- We have learnt that:
- IoT is still nascent and there is no single definition
- The transition from traditional services to IoT requires policymakers and regulators to apply existing rules in a transparent and consistent way
- There are several technological, economic and legal drivers and inhibitors of IoT
- IoT can help deliver a wide range of socio-economic benefits
- IoT can enable new business models
- So on to the final subject

How governments can help drive IoT adoption in their country

Governments should focus in six main areas to help drive the adoption of IoT products and services

Global deployment

Promoting investment

Building trust

Interoperability

Traffic management

Spectrum

Facilitating global deployments, promoting investment, building trust...

...supporting interoperability, traffic management and spectrum harmonisation

- Support and promote interoperable specifications and standards
 - Operators need the ability to actively manage network traffic to meet customer needs
 - This is particularly relevant for IoT services

- Allocate sufficient harmonised spectrum to enable the growth of IoT devices and services
- Adopt a flexible framework for both licensed and unlicensed spectrum

Thank you!

